Dendritic cell maturation and survival are differentially regulated by TNFR1 and TNFR2.
نویسندگان
چکیده
The capacity of dendritic cells (DC) to regulate adaptive immunity is controlled by their maturation state and lifespan. Although TNF is a well-known maturation and survival factor for DC, the role of the two TNFR, TNFR1 and TNFR2, in mediating these effects is poorly understood. By using unique TNF variants that selectively signal through TNFR1 and/or TNFR2, we demonstrate differential functions of TNFR in human monocyte-derived and blood CD1c(+) DC. Activation of TNFR1, but not TNFR2, efficiently induced DC maturation, as defined by enhanced expression of cell surface maturation markers (CD83, CD86, and HLA-DR) as well as enhanced T cell stimulatory capacity. In contrast, both TNFR1 and TNFR2 significantly protected DC against cell death, indicating that innate signals can promote DC survival in the absence of DC maturation. We further show differential activation of NF-κB signaling pathways by the TNFR: TNFR1 activated both the p65 and p52 pathways, whereas TNFR2 triggered p52, but not p65, activation. Accordingly, the p65 NF-κB pathway only played a role in the prosurvival effect of TNFR1. However, cell death protection through both TNFR was mediated through the Bcl-2/Bcl-xL pathway. Taken together, our data show that TNFR1, but not TNFR2, signaling induces DC maturation, whereas DC survival can be mediated independently through both TNFR. These data indicate differential but partly overlapping responses through TNFR1 and TNFR2 in both inflammatory and conventional DC, and they demonstrate that DC maturation and DC survival can be regulated through independent signaling pathways.
منابع مشابه
Tumor Necrosis Factor Receptor 1 Mediates Dendritic Cell Maturation and CD8 T Cell Response through Two Distinct Mechanisms
Tumor necrosis factor alpha (TNFα) and its two receptors (TNFR1 and 2) are known to stimulate dendritic cell (DC) maturation and T cell response. However, the specific receptor and mechanisms involved in vivo are still controversial. Here we show that in response to an attenuated mouse hepatitis virus (MHV) infection, DCs fail to mobilize and up-regulate CD40, CD80, CD86, and MHC class I in TNF...
متن کاملTNF receptor 1 mediates dendritic cell maturation and CD8 T cell response through two distinct mechanisms.
TNF-α and its two receptors (TNFR1 and 2) are known to stimulate dendritic cell (DC) maturation and T cell response. However, the specific receptor and mechanisms involved in vivo are still controversial. In this study, we show that in response to an attenuated mouse hepatitis virus infection, DCs fail to mobilize and up-regulate CD40, CD80, CD86, and MHC class I in TNFR1(-/-) mice as compared ...
متن کاملDifferential Expression, Shedding, Cytokine Regulation and Function of TNFR1 and TNFR2 in Human Fetal Astrocytes
Tumor necrosis factor (TNF)-alpha induces pleiotropic cellular effects through a 55kDa, type 1 receptor (TNFR1) and a 75kDa type 2 receptor (TNFR2). Moreover, it participates in the pathogenesis of several CNS diseases, including demyelinating diseases. TNF-alpha receptors are differentially expressed and are regulated in many cell types. However, data regarding the TNF-alpha receptor expressio...
متن کاملTNFR1- and TNFR2-mediated signaling pathways in human kidney are cell type-specific and differentially contribute to renal injury.
In normal kidney, TNFR1 is expressed in glomerular and peritubular capillary EC, and some tubular cells, and colocalizes with inactive apoptosis signal-regulating kinase-1 (ASK1) phosphorylated at serine 967. Biopsies of rejecting or ischemic renal allografts, which show both tubular cell injury and proliferation, display down-regulation of TNFR1 and activation of ASK1 as well as up-regulation ...
متن کاملType II tumour necrosis factor-alpha receptor (TNFR2) activates c-Jun N-terminal kinase (JNK) but not mitogen-activated protein kinase (MAPK) or p38 MAPK pathways.
The pleitropic actions of tumour necrosis factor-alpha (TNF) are transmitted by the type I 55 kDa TNF receptor (TNFR1) and type II 75 kDa TNF receptor (TNFR2), but the signalling mechanisms elicited by these two receptors are not fully understood. In the present study, we report for the first time subtype-specific differential kinase activation in cell models that respond to TNF by undergoing a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 193 10 شماره
صفحات -
تاریخ انتشار 2014